Fabricant de circuits imprimés médicaux
Types de PCB disponibles

Assemblage et fabrication de circuits imprimés médicaux

PCB médicaux haut de gamme - l'évangile de l'industrie médicale électronique

PCBA boards are an important part of today’s electronics industry, enabling machines to improve and advance. While printed circuit boards are used in many electronic devices, including LEDs, water dispensers, and air conditioners, their use in the medical device is one of the most cutting-edge applications.

PCB médical est un type de PCB utilisés dans l'industrie médicale. L'industrie médicale chinoise étant passée de la médecine traditionnelle chinoise à la médecine occidentale, la demande d'électronique médicale a considérablement augmenté. Cette évolution a favorisé le développement de la fabrication de circuits imprimés médicaux et de la technologie d'assemblage en Chine, faisant de FS Technology un partenaire fiable pour la fabrication de circuits imprimés. fabricant de circuits imprimés pour équipements médicaux. The medical circuit produced by FS Technology is widely used in a range of medical devices, including ultrasound machines, patient monitoring equipment, medical imaging systems, and other devices that require precise and reliable electronic control. These PCBA play a crucial role in controlling and regulating the electronic functions of medical equipment.

Get a Medical PCB Assembly Quote from FS Technology

If you’re looking for a top-tier manufacturer of medical PCB/PCBA, go no further than FS Technology. Since medical electronics are related to human health, they must meet strict safety and reliability standards. For example, most manufacturers can provide basic certifications such as ISO9001 et ISO14001. However, it is far from enough for a company like FS Technology that has the ability to provide PCBA services for the medical industry. We must meet medical industry standards such as Certification ISO 13485. En outre, certains produits électroniques médicaux implantables requièrent une précision et une stabilité accrues. Ils doivent donc être conçus pour résister à des environnements médicaux difficiles, la fabrication implique davantage de tests et la soudure des composants doit être assurée lors de la qualité de l'assemblage, etc.

PCB médical ISO 13485
Certification ISO 13485 de FS Technology

What medical electronic PCB have been produced?

Depuis l'éclatement de la COVID-19 pandemic, the global demand for medical electronics has remained high. In this environment, FS Technology has received many inquiries from the medical industry. Currently, the majority of the medical PCBA we produce are for electronic forehead thermometers. However, we also manufacture PCBA for other medical devices such as CT scanners, surgical lights, and a range of other products. The following are some examples of the PCBA for medical products that we can provide to our customers:

Medical PCB Manufacturing : From Design to Assembly

Medical PCB will be directly used to build medical products to ensure the health of patients, which requires manufacturers to implement the most stringent standards from design to manufacturing to assembly to fulfill such orders. The following is the production process of FS Technology:

Conception de circuits imprimés médicaux

Step 1: Build Schematic

Schematic is a visual representation of the electronic components and connections that constitute a printed circuit board. The schematic offers a clear overview of the circuit, enabling engineers to identify potential issues and make necessary adjustments before proceeding to the production phases. In a schematic diagram, components are represented by symbols, and connections between them are depicted by lines. These symbols are standardized, making it easy for identification des composants de la carte de circuit imprimé. For instance, a resistor is typically represented by a zigzag line, while two parallel lines denote a capacitor.

Usually, the customer carries out this process. If you do not have the ability in this area, FS Technology’s engineering team will assist you in completing this process! In order to complete the process, you must provide all the essential information about the project to FS Technology to produce basic drawings. Some crucial details include the intended use of PCB, the type of circuit board, the required power, and the material used. All of these details must be accurate, and the initial medical device PCB design should be based on them.

Step 2: Layout Design

The next stage after the initial schematic design is to create the layout for the medical printed circuit board, and it is recommended to use professional Logiciel de conception de circuits imprimés for this process. In modern healthcare systems, various implantable and miniaturized devices are used, and to reduce the size of the boards, it is essential to arrange them as closely as possible to each other. Additionally, careful consideration is given to the power requirements of components, overall circuit power consumption, electromagnetic interference, and thermal management to ensure the proper functioning of the circuit. To ensure the reliable and efficient operation of medical device PCB, it is crucial to follow Lignes directrices pour la conception des circuits imprimés and plan a reasonable component and bare board layout. Here are some suggestions:

  • Les tracés doivent être courts et directs ;
  • Utilisez des plans d'alimentation et des plans de masse pour raccourcir les signaux provenant des condensateurs de découplage et pour assurer une bonne couverture de la terre ;
  • Construire des pistes et des plans à haute énergie avec suffisamment de cuivre pour supporter une puissance élevée et une chute de tension minimale ;
  • Utilisez des paires ou des signaux différentiels pour réduire la réflexion sur les tracés de données à grande vitesse ;
  • Les signaux d'horloge doivent être courts et éloignés des autres traces ou plans voisins pour éviter la diaphonie ;
  • Lorsque vous superposez des traces provenant de différentes couches, faites-les se chevaucher perpendiculairement ;
  • Gardez les composants sensibles à la température à l'écart des autres composants ;
  • Vérifier soudure par refusion requirements twice to ensure that Composants SMD stay cool while being assembled.

Step 3: Files for Final Work

Once the design is complete, your final job is to send the Gerber or CAD data to the China medical PCB assembly manufacturer. Once the design and manufacturing files are approved, Services de fabrication de circuits imprimés can officially begin to turn your digital design into reality.

While there are many manufacturers worldwide to choose from, it is essential to look for ISO 13485 certification for medical PCB projects. If you are unsure about proceeding with the project, you can send the files and instructions outlined above to FS Technology. As the best among 1-10 layer medical PCB manufacturers, we can provide you with the necessary expertise and quality assurance.

Fabrication de circuits imprimés médicaux

Étape 1 : Imagerie de conception

At this step, the medical PCB manufacturing factory becomes involved in the process and utilizes a plotter printer to convert the design files for circuit boards into films, which serve as photo negatives of the diagram.

Lorsque le circuit imprimé est imprimé, les couches internes présentent deux couleurs d'encre :

  • L'encre noire représente les traces de cuivre et les circuits sur le circuit imprimé.
  • L'encre transparente, comme la base en fibre de verre, représente les parties non conductrices du circuit imprimé.
 

La couche extérieure a :

  • Chemins de cuivre affichés à l'encre claire.
  • La zone où le cuivre sera gravé est indiquée à l'encre noire.

Étape 2 : Couche interne en cuivre imprimé

This step involves manufacturing the inner-layer circuits for medical PCB to establish conductive pathways on different layers. If your project requires a more complex multilayer medical PCB, this step must be repeated until all inner-layer circuits are printed and etched. Finally, they are aligned and laminated to form a complete inner layer. The specific operations are as follows:

  1. Laminate copper layers onto each side of the fiberglass substrate.
  2. Align a thin film with the copper layers and place it on top.
  3. Use ultraviolet (UV) light exposure to cure and protect the underlying copper.
  4. Employ a chemical solution to develop the circuit board, removing uncured transparent ink, leaving behind copper traces and circuits.
  5. Etch to remove excess copper foil, with black ink on the film ensuring that only copper in unwanted areas is etched away.

Étape 3 : Combinaison de différentes couches

Once all necessary inner layers have undergone etching, printing, and lamination, ensuring cleanliness, different layers need to be combined to form a complete printed circuit board. This involves the drilling process to connect with the inner layers. Most manufacturers employ traditional CNC drilling, which may not suffice for medical PCB with high precision requirements.

Take, for example, medical pacemaker PCB, where even typical devices may have over a hundred drill holes, not to mention more sophisticated instruments. The time required for manufacturing is just one aspect of the challenge; what’s even more critical is that any minor deviation can lead to assembly failures.

To address this challenge, FS Technology utilizes optical drilling machines and laser drilling processes to achieve precision drilling. This involves a machine that drives pins through alignment holes to align the inner and outer layers, ensuring the effectiveness of PTH during assemblage de PCB à trou traversant.

Step 4: Outer Layer Imaging

Imaging the outer layer is a crucial step in the Processus de fabrication des PCB. Une autre résine photosensible est appliquée sur le Panneau médical PCBL'imagerie consiste à transférer une image de la conception du circuit imprimé sur les couches de cuivre de la surface extérieure du circuit. Toutefois, pour l'imagerie, la résine photosensible n'est appliquée que sur la couche extérieure. Le processus se déroule dans une zone propre et sûre.

Le processus d'imagerie commence par le nettoyage de la surface du cuivre pour s'assurer qu'il n'y a pas de saletés ou de débris qui pourraient interférer avec la transmission de l'image. Des épingles sont utilisées pour maintenir les transparents à l'encre noire en place et éviter qu'ils ne se déforment. Après avoir été recouvert d'une résine photosensible, le panneau médical du PCB passe dans la salle jaune. Le jet de lumière UV durcit la résine photosensible et la réserve non durcie recouverte d'encre noire est éliminée.

Étape 5 : Gravure de la couche externe

During this process, any copper that doesn’t belong to the outer layer is removed, and an additional layer of copper is added using electroplating. Electroplated tin is used to protect critical areas of copper after the initial copper bath. Once the outer layer etching is completed, the panel can undergo Inspection AOI checks to ensure that even medical aesthetic PCB boards with complex circuits meet the necessary specifications.

Step 6: Solder Mask and Silk Screen

After the circuitry manufacturing is complete, an masque de soudure is applied to protect the outer layer of the medical printed circuit board and to apply silk screen details such as company ID, manufacturer logos, symbols, component identifiers, pin locators, and other prominent markings or features. The process involves:

  1. Cleaning the medical PCB panel to remove any contaminants.
  2. Applying epoxy resin ink and solder mask film to the surface of the circuit board.
  3. Exposing to UV light to cure the areas where soldering is not required in the solder mask layer.
  4. Removing the areas that don’t need masking and placing the board in an oven to solidify the solder mask layer.
  5. Using an inkjet printer to directly print information details onto the board.

Step 7: Surface Finishing

Depending on the needs of the customer, it may be necessary to apply a finition de la surface to the finished medical PCB, which involves applying a coating of conductive material to the surface of the board.

Assemblage de circuits imprimés médicaux

Étape 1 : Pochoir de pâte à braser

La technique de pochoir de pâte à braser est la première étape du processus de fabrication de la pâte à braser. Processus d'assemblage des PCB. In this step, a Pochoir pour circuits imprimés is used to cover the circuit board so that only the portion of the board that will be mounted with a component is visible. This makes it easier to apply the solder paste solely to the board’s areas where the components will be placed.

Un dispositif mécanique est utilisé pour maintenir la carte et le pochoir de soudure en place. Ensuite, un applicateur est utilisé pour déposer la pâte à braser à des endroits prédéterminés. La pâte à braser est appliquée de manière uniforme sur toutes les zones exposées. Une fois cette étape terminée, le pochoir est retiré et la pâte à braser est laissée aux endroits appropriés.

Étape 2 : Un jeu de "choisir et placer".

De nombreux dispositifs électroniques médicaux sont implantés dans le corps humain ou portés sur des organes sensibles. En cas de dysfonctionnement de ces dispositifs, par exemple en cas de court-circuit ou d'incendie, ils peuvent causer des dommages secondaires au patient. Il est donc essentiel de placer avec précision les composants dans les positions prévues à l'aide d'un équipement précis.

Électronique médicale implantable, telle que implants cochléaires et yeux artificiels, typically have many electronic components in their internal structure. However, smaller devices present challenges in the picking and placing process, making it more difficult to maintain precision. To achieve the high accuracy required for assembling PCB for medical cochlear implants, FS Technology uses robotic equipment. Robots are responsible for picking and mounting surface-mount components onto circuit boards, ensuring that the components are precisely placed on the solder paste with the mounting mechanism.

Étape 3 : Refusion de la soudure

Le site reflow soldering process is designed to strengthen the connections between the circuit board and electrical components. To achieve this, a conveyor belt is used to move the circuit board through a large reflow oven. The solder paste is melted by heating the PCBA board to around 2500 degrees Celsius during the process. After being heated in the oven, the medical PCBA goes through a series of coolers, which help the solder paste cool and harden, resulting in strong connections between the electrical components and the board.

Il est important de noter que pour les double-layered medical PCBLes processus de pochoirage et de refusion sont effectués dans un ordre spécifique. Le côté de la carte qui comporte le moins de composants électriques et qui est plus facile à gérer est achevé en premier.

Étape 4 : Test d'assemblage du circuit imprimé médical

We emphasize the precision, reliability, and critical nature of medical circuit boards. Therefore, finding reliable manufacturers and excellent PCBA facilities and ensuring they have ISO 13485 certification is of utmost importance. Even when they meet these criteria, it is still necessary to inspect their Services de test des PCB.

In addition to manual inspections that run throughout the production process, including SPI and AOI, essais fonctionnels is performed at the final stage of assembling medical PCB. This ensures that the mainboard functions as expected and meets the high standards set by the medical industry.

After testing is completed, a thorough cleaning of the circuit board is carried out to remove any potential residues such as oil, solder flux, or other contaminants. Additionally, due to the specific requirements of the product, customers may also need specialized processes for medical PCBA production, such as sterile handling, based on the specific application type.

Price of Medical Device PCB

Par rapport à électronique grand public PCB, the price of medical device PCB is much higher due to the complexity of the processes and stringent requirements. For general electronics, FS Technology follows IPC-A-610-G-1 as the minimum standard, which is not sufficient for the medical industry. Therefore, it requires the adoption of level 2, level 3, or even higher execution standards. The result of these higher standards is increased production complexity, but FS Technology ensures to provide customers with more competitive medical PCBA services compared to peers!

Difficulties and Overcoming

The manufacturing challenges manifest in various aspects, including miniaturization, precision, and more. With the gradual advancement of medical technology, the demand and requirements for implantable and wearable devices are increasing. These products rely on the support of high-density, flexibility, and miniature components. High-density implies the need to stack more layers, and as the number of layers increases, the manufacturing complexity and failure rate also rise. Secondly, flexibility means the use of a flexible PCB that is three-dimensional space-friendly. Compared to traditional PCB, it is harder to construct and use more expensive materials like polyimide as substrates. More importantly, there are the procurement costs of components. To ensure requirements for miniaturization, multifunctionality, and high reliability, Composants SMD are essential. The procurement costs for these components are higher, and due to their small pins, the PCBA process becomes more challenging. Furthermore, some specific devices have additional requirements, such as using thermal-sensitive components in medical defibrillator PCB, and the requirement that components used in implantable medical PCB must withstand high-pressure sterilization.

High-End Medical PCB

Interconnexion à haute densité

High-Density Interconnect is one of the core technologies for building modern medical equipment PCB, aimed at achieving more electronic components and connections within limited PCB space. A circuit board constructed using this technology is known as HDI PCB. Due to the intricate processes involved, such as fine traces, blind vias, and buried vias, HDI PCB can be expensive, but they are well worth the investment.

In remote medical applications, there is zero tolerance for signal delays or interruptions. Even a slight deviation of 0.1 seconds could be life-threatening for patients. Medical-grade HDI PCB ensure signal transmission speed and mitigate various response issues. Furthermore, by implementing certain design and engineering improvements, these high-density circuit boards can be endowed with the ability to resist electromagnetic interference and noise. This can be achieved through measures like ground plane planning, interlayer shielding, and EMI filtering.

Currently, most medical CT scanning devices and multimodal physiological and electrocardiogram (ECG) monitors benefit from the true floating-point inputs enabled by HDI PCB.

Flexible

The medical industry has a significant demand for PCB flexible due to their advantages such as miniaturization, design freedom, and flexibility. These characteristics meet the requirements of medical devices for lightweight, compact, and reliable solutions.

Medical electronic products must withstand harsh conditions within the human body while providing high reliability and electrical performance, making flexible circuits an ideal choice for such applications. They are typically made from thin and flexible materials like polyimide or polyester, allowing them to bend, fold, or twist to fit tight spaces or complex shapes. Furthermore, the design of flexible PCB can accommodate temperature variations, provide waterproofing, maintain sterility, and allow for multiple reassemblies.

Various medical devices rely on flexible circuits as their core components, including pacemakers, defibrillators, neurostimulators, ultrasound machines, endoscopes, and more.

Multilayer Structure

In contrast, PCB rigide can provide a more reliable internal structure compared to flexible PCB, as manufacturers can place components on a more stable platform. However, due to their inability to fold, they may not offer the advantage of miniaturization, and thus, they rely on the benefits of multi-layer structures to accommodate more components.

In many high-end medical products, rigid PCB is commonly found. These include surgical robots, X-ray machines, MRI devices, electrocardiographs, and chemotherapy pumps. Most medical equipment manufacturers opt for PCB multicouche for such applications. The materials used for these PCB include glass epoxy resin, aluminum, ceramics, and more.

Tests médicaux stricts du PCB

The development process for medical devices includes extra considerations and requirements beyond what is generally required for creating non-critical PCB. Much testing is conducted on medical equipment, which is more than can be said for other kinds of PCB. This is primarily because of the stringent testing requirements imposed by regulatory agencies; however, functional testing and production testing are often also necessary. The regulatory testing that is required for medical devices usually falls into one of two broad categories:

  • Les équipements médicaux qui transfèrent de l'énergie vers ou depuis un patient ou qui détectent l'énergie transmise vers ou depuis un patient font l'objet de la norme CEI 60601-1.
  • Les équipements médicaux qui ne sont pas directement reliés à un patient, tels que ceux utilisés dans un laboratoire, relèvent de la norme IEC 61010-1.

Les informations qui précèdent illustrent l'expertise de FS Technology en matière de fabrication et d'assemblage de circuits imprimés médicaux. Si vous reconnaissez nos compétences, n'hésitez pas à nous contacter par courrier électronique. Nous répondrons rapidement à votre demande et vous fournirons un devis de PCBA à un prix abordable.

Ensuring the Reliability of Medical PCBA

Ensuring the production quality of medical PCBA is crucial. Before commencing large-scale production, it is essential to build prototypes of medical PCB to validate design feasibility and the manufacturer’s production capabilities. Continuous debugging and upgrades are performed to ensure that the product can meet industry standards.

Executive Standard

The development process of medical devices is influenced by various potential risks. In addition to using more testing to ensure quality, it is also necessary to adhere to industry guidelines. Below are the industry standards that FS Technology recommends paying attention to during development:

  • ISO 9000 or 9001: Addresses the quality and dependability criteria in designing, manufacturing, and testing electronic products.
  • ISO 13485 : This is a quality management system (QMS) standard specifically designed for medical device manufacturers. It sets requirements for the entire product life cycle, from design and development to production and post-market surveillance.
  • IEC 60601: This is a series of international standards that cover the safety and effectiveness of medical electrical equipment. Particular attention is given to protection against electric shock, mechanical hazards, and radiation.
  • IEC 61010-1: Safety rules for measuring, controlling, and lab equipment that uses electricity.
  • IPC-A-610: This is a standard for the acceptability of electronic assemblies, including PCB. It covers requirements for soldering, cleanliness, and other aspects of production.
  • FDA 21 CFR Part 820: This regulation from the US Food and Drug Administration (FDA) outlines the QMS requirements for medical device manufacturers. It covers areas such as design controls, production controls, and device labeling.
  • UL 94: This is a flammability standard for materials used in electronic products, including PCB. It sets requirements for the resistance of materials to flame and ignition.
  • CFR 820: For verifying production and quality control.

Focus of Project

La fiabilité des applications PCB médicales est cruciale, qu'elles soient utilisées en salle d'opération ou en laboratoire. Dans le domaine médical, il n'y a pas de place pour les dysfonctionnements ou les mauvaises performances des équipements. C'est pourquoi les sont essentielles à la création d'un circuit imprimé destiné à être utilisé dans des dispositifs médicaux :

  • La conception du circuit imprimé doit tenir compte des exigences spécifiques du dispositif médical, y compris le nombre de composants, la taille du circuit et les exigences en matière de gestion thermique.
  • Il est essentiel de positionner les composants avec soin et d'acheminer les traces correctement pour garantir la réussite de la carte.
  • La sélection des composants est essentielle pour créer des dispositifs médicaux fiables. Il est important de trouver les meilleurs composants qui répondent aux exigences spécifiques du dispositif médical, qui sont fiables, durables et qui ont une longue durée de vie.
  • Choose a professional usine d'assemblage de circuits imprimés médicaux or a company with medical industry service experience and a good reputation to ensure the quality of Services d'assemblage de PCB.
  • L'utilisation de assemblage de circuits imprimés sans plomb est considérée comme une pratique efficace, et le choix d'une entreprise dédiée au développement durable peut apporter des avantages inattendus à votre projet.
  • Le processus de nettoyage des circuits imprimés est particulièrement important dans le domaine de l'électronique médicale. Alors que l'objectif du nettoyage est généralement d'éviter les courts-circuits causés par les taches de surface pendant l'utilisation, dans l'équipement médical, les agents de nettoyage résiduels peuvent nuire aux patients.
  • Les circuits imprimés assemblés doivent faire l'objet d'une inspection et de tests approfondis afin de s'assurer qu'ils répondent aux normes requises en matière de fiabilité, de performance et de sécurité.
  • Pour s'assurer que les interférences électromagnétiques (EMI) n'affectent pas le circuit imprimé médical, les ingénieurs doivent se référer à diverses normes EMI.

Get a Medical PCB Assembly Quote